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ABSTRACT

DCPS (the Distributed Connectionist Production System) is a neural

network with complex dynamical properties. Visualizing the energy
landscapes of some of its component modules leads to a better
intuitive understanding of the model, and suggests ways in.which
its dynamics can be controlled in order to improve performance on
difficult cases.
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ABSTRACT

DCPS (the Distributed Connectionist Production System) is a neural
network with complex dynamical properties. Visualizing the energy
landscapes of some of its component modules leads to a better intuitive
understanding of the model, and suggests ways in which its dynamics
can be controlled in order to improve performance on difficult cases.

INTRODUCTION

Competition through mutual inhibition appears in a wide variety of network designs.
This paper discusses a system with unusually complex competitive dynamics. The
system is DCPS, the Distributed Connectionist Production System of Touretzky
and Hinton (1988). DCPS is a Boltzmann machine composed of five modules,
two of which, labeled "Rule Space"and'"'Bind Space,"'are winner-take-all (WTA)
networks. These modules interact via their effects on two attentional modules called
clause spaces. Clause spaces are another type of competitive architecture based on
mutual inhibition, but they do not produce WTA behavior. Both clause spaces
provide evidential input to both WTA nets, but since connections are symmetric
they also receive top-down')"guidance-"from the WTA nets. Thus, unlike most
other competitive architectures, in DCPS the external input to a WTA net does
not remain constant as its state evolves. Rather, the present output of the WTA
net -helps to determine which evidence will become visible in the clause spaces in the
future. This dynamic attentional mechanism allows rule and bind spaces to work
together even though they are not directly connected.' 7 .4

'I ,

DCPS actually uses a distributed version of winner-take-all networks whose oper-
ating characteristics differ slightly from the non-distributed version. Analyzing the
energy landscapes of DWTA networks has led to a better intuitive understanding
of their dynamics. For a complete discussion of the role of DWTA nets in DCPS,
and the ways in which insights gained from visualization led to improvements in
the system's stochastic search behavior, see [Touretzky, 1989].



DISTRIBUTED WINNER-TAKE-ALL NETWORKS

In classical WTA nets (Feldman & Ballard, 19821, a unit's output value is a continu-
ous quantity that reflects its activation level. In this paper we analyze a stochastic,
distributed version of winner-take-all dynamics using Boltzmann machines, whose
units have only binary outputs [Hinton & Sejnowski, 1986. The amount of eviden-
tial input to these units determines its energy gap [Hopfield, 1982], which in turn
determines its probability of being active. The network's degree of confidence in
a hypothesis is thus reflected in the amount of time the unit spends in the active
state. A good instantaneous approximation to strength of support can be obtained
by representing each hypothesis with a clique of k independent units looking at a
common evidence pool. The number of active units in a clique reflects the strength
of that hypothesis. DCPS uses cliques of size 40. Units in rival cliques compete via
inhibitory connections

If all units in a clique have identical receptive fields, the result is an "ensemble"
Boltzmann machine [Derthick & Tebelskis, 1988). In DCPS the units have only
moderately sized, but highly overlapped, receptive fields, so the amount of evidence
individual units perceive is distributed binomially. Small excitatory weights between
sibling units help make up fr variations in external evidence. They also make states
where all the units in a single clique are active be powerful attractols.

Energy tours in a DWTA take one of four basic shapes. Examples may be seen in
Figure Ia. Let e be the amount of external evidence available to each unit, 9 the
unit's threshold, k the clique size, and w, the excitatory weight between siblings.
The four shapes are:

Eager vee: the evidence is above threshold (e > 0). The system is eager to
turn units on; energy decreases as the number of active units goes up. We
have a broad, deep energy well, which the system will naturally fall into given
the chance.

Reluctant vee: the evidence is below threshold, but a little bit of sibling
influence (fewer than k/2 siblings) is enough to make up the difference and
put the system over the energy barrier. We have e < 0 < e + w, (k - 1)/2. The
system is initially reluctant to turn units on because that causes the energy to
go up, but once over the hump it willingly turns on more units. With all units
in the clique active, the system is in an energy well whose energy is below
zero.

Dimpled peak: with higher thresholds the total energy of the network may
remain above zero even when all units are on. This happens when more than
half of the siblings must be active to boost each unit above threshold, i.e.,
e + w,(k - 1) > 0 > e + w,(k - 1)/2. The system can still be trapped in

the small energy well that remains, but only at low temperatures. The well
is hard to reach since the system must first cross a large energy barrier by
traveling far uphill in energy space. Even if it does visit the well, the system
may easily bounce out of it again if the well is shallow.



Smooth peak: when 6 > e + w,(k - 1), units will be below threshold even
with full sibling support. h, this case there is no energy well, only a peak.
The system wants to turn all units off.

VISUALIZING ENERGY LANDSCAPES

Let's examine the energy landscape of one WTA space when there is ample evidence
in the clause spaces for the winning hypothesis. We select three hypotheses, A, B,
and C, with disjoint evidence populations. Let hypothesis B be the best supported
one with evidence 100, and let A have evidence 40 and C have evidence 5. We will
simplify the situation slightly by assuming that all units in a clique perceive exactly
the same evidence. In the left half of Figure lb we show the energy curves for A,
B, and C, using a value of 69 for the unit thresholds.' Each curve is generated by
starting with all units turned off; units for a particular hypothesis are turned on one
at a time until all 40 are on; then they are turned off again one at a time, making
the curve symmetric. Since the evidence for hypothesis A is a bit below threshold,
its curve is of the "reluctant vee" type. The evidence for hypothesis B is well above
threshold, so its curve is an "eager vee." Hypothesis C has almost no evidence; its
"dimpled peak" shape is due almost entirely to sibling support. (Sibling weights
have a value of +2; rival weights a value of -2.)

Note that the energy well for B is considerably deeper than for A. This means at
moderate temperature the model can pop out of A's energy well, but it is more
likely to remain in B's well. The well for B is also somewhat broader than the well
for A, making it easier for the B attractor to capture the model; its attractor region
spans a larger portion of state space.

The energy tours for hypotheses A, B, and C correspond to traversing three or-
thogonal edges extending from a corner of a 40 x 40 x 40 cube. A point at location
(z,y.z) in this cube corresponds to x A units, y B units, and z C units being
active. During the stochastic search, A and B units will be flickering on and off
simultaneously, so the model will also visit internal points of the cube not covered
in the energy tour diagram. To see these points we will use two additional graphic
representations of energy landscapes. First, note that hypothesis C gets so little
support that we safely can ignore it and concentrate on A and B. This allows us
to focus on just the front face of the state space cube. In Figure 2a, the number
of active A units runs from zero to forty along the vertical axis, and the number of
active B units runs from zero to forty along the horizontal axis. The arrows at each
point on the graph show legal state transitions at zero temperature. For example,
at the point where there are are 38 active B units and 3 active A units there are . on For
two arrows, pointing down and to the right. This means there are two states the RA&I
model could enter next: it could either turn off one of the active A units, or turn .B
on one more B unit, respectively. At nonzero temperatures other state transitions -need 0

• cation
All the weights and thresholds used in this paper are actual DCPS values taken from (Touretzky

& Hinton, 19881.
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are possible, corresponding to uphill moves in energy space, but these two remain
the most probable.

The points in the upper left and lower right corners of Figure 2a are marked by
"Y" shapes. These represent point attractors at the bottoms of energy wells; the
model will not move out of these states unless the temperature is greater than zero.
Other points in state space are said to be within the region of a particular attractor
if all legal transition sequences (at T = 0) from those points lead eventually to the
attractor. The attractor regions of A and B are outlined in the figure. Note that
the B attractor covers more area than A, as predicted by its greater breadth in
the energy tour diagram. Note also that there is a small ridge between the two
attractor regions. From starting points on the ridge the model can end up in either
final state.

Figure 2b shows the depths of the two attractors. The energy well for B is substan-
tially deeper than the well for A. Starting at the point in the lower left corner where
there are zero A units and zero B units active, the energy falls off immediately when
moving in the B direction (right), but rises initially in the A direction (left) before
dropping into a modest energy well when most of the A units are on. Points in
the interior of the diagram, representing a combination of A and B units active,
have higher energies than points along the edges due to the inhibitory connections
between units in rival cliques.

We can see from Figures lb and 2 that the attractor for A, although narrower and
shallower than the one for B, is still sizable. This is likely to mislead the model, so
that some of the time it will get trapped in the wrong energy well. The fact that
there is an attractor for A at all is due largely to sibling support, since the raw
evidence for A is less than the rule unit threshold.

We can eliminate the unwanted energy well for A by choosing thresholds that exceed
the maximum sibling support of 2 x 39 = 78. DCPS uses a value of 119. However,
early in the stochastic search the evidence visible in the clause spaces will be lower
than at the conclusion of the search; high thresholds combined with low evidence
would make the B attractor small and very hard to find. (See the right half of
Figure 1c, and Figure 3.) Under these conditions the largest attractor is the one
with all units turned off: the null hypothesis.

DISCUSSION

Our analysis of energy landscapes pulls us in two directions: we need low thresholds
so the correct attractor is broad and easy to find, but we need high thresholds to
eliminate unwanted attractors associated with local energy minima. Two solutions
have been investigated. The first is to start out with low thresholds and raise them
gradually during the stochastic search. This "pulls the rug out from under" poorly-
supported hypotheses while giving the model time to find the desired winner. The
second solution involves clipping a corner from the state space hypercube so that
the model may never have fewer than 40 units active at a time. This prevents the



model from falling into the null attractor. When it attempts to drop the number of
active units below 40 it is kicked away from the clipped edge by forcing it to turn
on a few inactive units at random.

Although DCPS is a Boltzmann machine it does not search the state space by
simulated annealing in the usual sense. True annealing implies a slow reduction
in temperature over many update cycles. Stochastic search in DCPS takes place
at a single temperature that has been empirically determined to be the model's
approximate "melting point." The search is only allowed to take a few cycles;
typically it takes less than 10. Therefore the shapes of energy wells and the dynamics
of the search are particularly important, as they determine how likely the model is
to wander into particular attractor regions.

The work reported here suggests that stochastic search dynamics may be improved
by manipulating parameteIrs other than just absolute temperature and cooling rate.
Threshold growing and corner clipping appear useful in the case of DWTA nets.
Additional details are available in (Touretzky, 1989].
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Figure 1: (a) four basic shapes for DWTA energy tours; (b) comparison of low
vs. high thresholds in energy tours where there is a high degree of evidence for
hypothesis B; (c) corresponding tours with low evidence for B.
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Figure 3: High thresholds and low evidence. as in the right half of Figure lc. (a)
Legal state transitions at zero temperature; (b) the corresponding energy surfce.


